a^2+a^2=(4R)^2

Simple and best practice solution for a^2+a^2=(4R)^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a^2+a^2=(4R)^2 equation:



a^2+a^2=(4)^2
We move all terms to the left:
a^2+a^2-((4)^2)=0
determiningTheFunctionDomain a^2+a^2-4^2=0
We add all the numbers together, and all the variables
2a^2-16=0
a = 2; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·2·(-16)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*2}=\frac{0-8\sqrt{2}}{4} =-\frac{8\sqrt{2}}{4} =-2\sqrt{2} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*2}=\frac{0+8\sqrt{2}}{4} =\frac{8\sqrt{2}}{4} =2\sqrt{2} $

See similar equations:

| 17((x/2)-300)^2=2((x/2)+300)^2 | | 7(x+9)+x=4(x+2)+6 | | -3.2h+7.1=-9.86 | | 92n+18n-70n-21n+11n-12=78 | | -2f-4=8 | | 85z+(-78z)+(-98)=98 | | 32x-3=31x+1 | | 7=8/v | | n=2(-4)-5 | | 0.25z+7=11 | | (-12r)+51r+(-25r)=28 | | 6m-3=4m-16 | | 4(t0-5)+2=t+3 | | 4(8)^x=199 | | 2p/6=30 | | 36q-(-35q)-35q-(-7q)-(-41)=(-45) | | -3a-8=-2a+13 | | 8*10.5+4+2x=90 | | 5x2-50x=0 | | 15(5c-3)=9c-4 | | Y=-5x+140 | | F(x)=-3/5x+2 | | 11k-(3k-8)2=4 | | (-25y)+23=(-46) | | 11k-(8-3k)2=4 | | 1y+4=2y+8y | | 15b-3b-1b+8b-9b+4=34 | | 1y+4=2y+8 | | -92r+5r-72r+22=81 | | 3/2n=6 | | 2x-x+240=180 | | 7x-3(9-x)=11 |

Equations solver categories